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Abstract The Göttingen 765 is known as the root-section airfoil of the Me163 Komet, a rocket-
powered tailless interceptor of WWII fame. But no definitive ordinates of the Göttingen 765 exist.
While surviving drawings and museum examples provide low-resolution data on the shape of the
airfoil, it is often useful to have more exact equations of the ordinates for research purposes. Here
we derive a meanline and thickness distribution that fit these measurements.
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Table 1. Symbols

a0, a1, a2, a3 Coefficients of forebody thickness distribution
d0, d1, d2, d3 Coefficients of afterbody thickness distribution
h Principal component coefficient
I Leading edge sharpness parameter
m Position of maximum thickness as a fraction of chord
Mn Nominal meanline
Me Empirical meanline
rLE Leading edge radius
T Airfoil thickness as a fraction of chord
x A position along airfoil chord
xu Upper surface x ordinate
xl lower surface x ordinate
y A distance above or below airfoil chord
yl lower surface y ordinate
yt thickness distribution at given x
yu upper surface y ordinate
yP Meanline principal component
yS Meanline sigmoid component
yR Meanline residual component
λ Sigmoid component coefficient
θ Angle of meanline slope

1 The Meanline

For tailless aircraft, the shape of the meanline is particularly important because such aircraft require
a wing that has a coefficient of moment that is both close to zero, and stable through a wide range of



angles of attack. The papers of Alexander Lippisch, chief designer of the Messerschmidt Me163, are at
Iowa State University in Ames. Among them is a graph showing the camber line of the Göttingen 765
and four other similar airfoils, differing by the amount of reflex at the trailing edge [1]. Although there
are no equations given for camber lines on the drawing, [2] states that the meanline for the Göttingen
765 is the sum of these two equations:

yp = h(1− (1− 2x)2n) (1)

ys = λ((1− 2x)− (1− 2x)2m+1) (2)

where m and n are integers. Although the values of h, λ, m, and n are not given, it is possible to recover
the values of those coefficients using multiple regression against the ISU curve. A very close fit occurs
where m = 2, n = 2, h = 0.00573952678, and λ = 0.018521412. But if Lippisch were working with only
a slide rule, he could not have carried more than two or “two-and-a-half” significant digits into any
calculation. Rounding to that precision gives us h = .00575 and λ = .0185. The nominal meanline then
becomes

Mn = .00575(1− (1− 2x)4) + .0185((1− 2x)− (1− 2x)5) (3)

and differentiating gives

dy

dx
= .046(−8x3 + 12x2 − 6x+ 1) + .148(20x4 − 40x3 + 30x2 − 10x+ 1) (4)

Equations 3 and 4 can be used to generate a nominal airfoil by wrapping the standard NACA 4-digit
thickness distribution around the meanline of [2], given the known thickness of the airfoil (14.4% of
chord). Since the NACA distribution was originally derived by reference to the Göttingen 398 airfoil
[3], it stands to reason that the thickness distribution of the 765 should be at least somewhat similar to
NACA’s standard. That thickness distribution is given by the well-known equation:

± yt = T

.2(.2969
√
x− .126x− .3516x2 + .2846x3 − .1015x4) (5)

For any given position on the chord (0 ≤ x ≤ 1) ordinates of the upper and lower surface can be
generated as follows: yt values for the given x are found from equation 5; the meanline mn for x is found
from equation 3, and its slope is found from equation 4. The slope angle θ is simply θ = arctan(dy/dx).
Then ordinates for the upper surface are xu = x− yt sin θ ; yu = mn + yt cos θ ; and for the lower surface
are xl = x+ yt sin θ ; yl = mn − yt cos θ .

This computed airfoil can be compared to the actual Göttingen 765. Measured ordinates for the airfoil
are found at [1], in several versions. The highest quality and best-measured version is one made from a
Messerschmitt factory drawing, which I will take as standard in this paper. Figure 1 is a foreshortened
graph showing this profile against the profile just computed.

It is clear from figure 1 that the computed airfoil, though vaguely similar to the Göttingen 765, has a
large flaw in the middle section, where the computed profile shows less camber than the actual airfoil.
This can only be due to an error in the meanline of [2], implying that both the ISU curve and [2] are not
fully correct in their treatment of the meanline. It may well be that the originally intended meanline was
modified after wind tunnel testing showed a need for increased camber. If that is the case, it is possible
that surviving documentation reflects the original meanline rather than the one used in the actual aircraft.

To investigate this further, I found y-ordinates for the computed airfoil corresponding to the x-
ordinates for each point in the drawing dataset [1]. By subtracting the computed airfoil y-ordinates from
the y-ordinates of the drawing, a set of residual values can be obtained. These residuals are shown in
figure 2.

The mid-chord flaw shows up clearly as a large hump in this figure. Note also that, if our thickness
distribution were incorrect it would show up in figure 2 as a gap between the residuals of the upper and
lower surfaces. In both cases, those gaps are generally small except at the leading and trailing edges.

Notice too that at the leading edge, the drawing dataset has significantly smaller ordinates (less
apparent camber) than the computed airfoil. This is almost certainly an artifact of measurement, since



Figure 1. Foreshortened plot of the Messerschmitt factory drawing compared to computed profile. Errors are
clearly present.

Figure 2. Residuals of the y-ordinates, using the meanline of [2] and NACA-4 digit thickness.

the exact point of an airfoil’s leading edge chord is often difficult to determine by eye. To correct this, we
rotate the ordinates of the drawing data [1] around the trailing edge clockwise by .0048 radian, so the
residuals near the leading edge come close to zero. Re-drawing the residuals after this rotation gives us a
residual dataset that is nearly zero at both leading and trailing edges (figure 3), which is what we want.

The reason for the rotation is that we would like to flatten that hump. To do that, we need to add a
new constituent equation to the meanline that will reduce these residuals to reasonably low values. But
any meanline must cross the axis at x = 0 and x = 1, which means the only way to correct residuals at
those points is by rotation. Those few datapoints at the very leading edge, which show great disparities
from the computed airfoil, are an artifact of the way the drawing was measured; since the profile is nearly
vertical at the leading edge, slight errors in measuring the x-ordinate result in spuriously large errors in
the y-ordinate. These residuals can be safely ignored. Again we use multiple regression to find an equation



Figure 3. Same as figure 2, with drawing rotated .0048 radian clockwise around trailing edge.

that fits the residual data closely, constraining coefficients so that y = 0 at x = 1, x = 0. In this case
rounding to sliderule precision is not adequate for the task, but using slightly more precision we find:

yR = −0.4148x5 + 1.1607x4 − 1.0954x3 + 0.3705x2 + .021x (6)

Combining equations 3 and 6 gives us the empirical meanline:

Me = .00575(1−(1−2x)4)+.0185((1−2x)−(1−2x)5)−0.4148x5+1.1607x4−1.0954x3+0.3705x2−.021x
(7)

and differentiating gives

dy

dx
= .046(−8x3+12x2−6x+1)+0.148(20x4−40x3+30x2−10x+1)−2.074x4+4.6428x3−3.2862x2+0.741x−.021

(8)
This meanline has a maximum camber of .019 at 26% of chord. Following the same procedure as

before, we wrap the NACA 4-digit thickness distribution around the empirical meanline and derive a
“first cut” empirical version of the Göttingen 765. Comparing this to figure 3 shows that we have indeed
corrected the camber.

2 The thickness distribution

Plotting the residuals of the empirical airfoil to the drawing dataset shows problem areas in a small slice
near the leading edge, and a broader region of the trailing edge. In both cases, the empirical airfoil is too
thick, causing the upper-surface and lower-surface residuals to diverge.

The standard NACA 4-digit distribution has a small gap at the trailing edge, amounting to about 1%
of the airfoil thickness. It is clear from the residual plot that this gap is responsible for the large residual
at the trailing edge. Therefore the thickness distribution must be modified. A procedure for generating
modified thickness distributions can be found in [4]. In addition to the trailing edge gap, there are three
other parameters that can be varied by this procedure: the trailing edge angle; the leading edge radius;
and m, the position of maximum thickness. Specifying the trailing edge gap and slope provides two of the
four coefficients we need for the thickness distribution.



Figure 4. Residuals after adding empirical correction to the meanline of Ref [2].

d0 = Trailing edge gap
2 (9)

For our purposes, we set d0 = 0 to close the trailing edge gap entirely. Next,

d1 = Trailing edge slope (10)

Reference [4] provides a table with suggested values for the trailing edge slope based on the position
of maximum thickness m = x, chosen to avoid a reflexive surface. We start by assuming the standard
value of m = .3 for the Göttingen 765.

Table 2.

m d1

.2 1.000 T

.3 1.170 T

.4 1.575 T

.5 2.235 T

.6 3.500 T

In Table 2, T is thickness expressed as a fraction of the chord. If other positions of m are desired, the
figures in this table are closely replicated by

d1 = (15.83333m3 − 2.17857m2 − .240476m+ 1.009)T (11)

Since maximum thickness of the Göttingen 765 is at x = .3, we provisionally adopt d1 = 1.170T =
.16848. Then we compute

d2 = 3[T − 2d0 − 2d1(1−m)]
2(1−m)2 + d1

(1−m) (12)



and

d3 = −d1

3(1−m)2 −
2d2

3(1−m) (13)

These four parameters determine the thickness distribution aft of the point of maximum thickness.
Forward of that point, we define an index parameter I that controls the leading edge radius and the
thickness of the nose. In the standard case I = 6 but this can be modified within the range 0 ≤ I < 9.
Brief experimentation shows that I = 5.7 gives a nearly perfect fit to the nose of the airfoil (and is much
superior to the standard NACA 4-digit distribution).

Then, following [5], we compute the following:

a0 = .296904I6 (14)

p = 0.2(1−m)2

.588− 2d1(1−m) (15)

a1 =
(

0.3
m

)
−

(
15a0

8
√
m

)
−

(
m

10p

)
(16)

a2 = −
(

0.3
m2

)
+

(
5a0

4m3/2

)
+

(
1
5p

)
(17)

a3 =
(

0.1
m3

)
−

(
.375a0

m5/2

)
−

(
1

10pm

)
(18)

The leading edge radius is given by

rLE = 1
2

(
T

0.2a0

)2
(19)

Finally, the thickness distribution ahead of the maximum thickness point x = m is found by

± yt = T

.2(a0
√
x+ a1x+ a2x

2 + a3x
3) (20)

and aft of the maximum thickness point by

± yt = d0 + d1(1− x) + d2(1− x)2 + d3(1− x)3 (21)

Since this is different from the standard NACA 4-digit distribution, we can expect the residual plot to
change too; and the changes are particularly beneficial to the leading and trailing edges. In fact, the fit is
so close that there is a good possibility that the NACA modified distribution was in fact the distribution
used in the Göttingen 765. If true, this may be the only known case of the NACA modified 4-digit
thickness distribution being used in a German aircraft of WWII.

Looking at the final residual plot (figure 5), both surfaces of our recovered airfoil are within .001 of
the Messerschmitt drawing for most of the length. The leading edge area is particularly well fit. Only
the trailing edge continues to show a discrepancy, from 75% of the chord back, where the Messerschmitt
drawing is slightly thicker than our recovered version. This may be due to slight modifications needed for
control surfaces. It is possible to remove that trailing edge discrepancy by increasing the trailing edge
slope parameter d1, but that creates a bigger problem that it solves farther forward, when the recovered
version becomes noticeably thicker than the drawn version.



Figure 5. Residuals after applying modified thickness distribution to the empirical meanline.

Figure 6. Scale drawing of final recovered airfoil.



3 Appendix A

Ordinates for the recovered Göttingen 765 airfoil.

Göttingen 765 airfoil (recovered). Thick: .144 LE radius: 0.02062 LE slope: 0.17300
1.000000 -0.000000
0.989894 0.000681
0.979818 0.001451
0.969768 0.002306
0.959744 0.003241
0.949742 0.004251
0.939760 0.005332
0.929797 0.006480
0.919852 0.007690
0.909921 0.008959
0.900004 0.010282
0.890099 0.011656
0.880204 0.013078
0.870319 0.014543
0.860440 0.016049
0.850569 0.017592
0.840702 0.019170
0.830839 0.020778
0.820980 0.022415
0.811122 0.024076
0.801265 0.025760
0.791409 0.027463
0.781551 0.029184
0.771693 0.030918
0.761832 0.032664
0.751969 0.034419
0.742102 0.036181
0.732232 0.037948
0.722357 0.039717
0.712477 0.041485
0.702591 0.043251
0.692701 0.045013
0.682804 0.046768
0.672900 0.048514
0.662990 0.050250
0.653073 0.051973
0.643149 0.053681
0.633218 0.055373
0.623278 0.057046
0.613331 0.058699
0.603376 0.060330
0.593413 0.061938
0.583441 0.063519
0.573461 0.065074
0.563472 0.066599
0.553475 0.068093
0.543469 0.069555
0.533454 0.070983
0.523430 0.072376
0.513397 0.073731
0.503355 0.075047
0.493303 0.076322
0.483243 0.077555
0.473172 0.078745



0.463093 0.079889
0.453003 0.080986
0.442904 0.082034
0.432796 0.083032
0.422677 0.083979
0.412549 0.084871
0.402410 0.085709
0.392262 0.086490
0.382103 0.087212
0.371934 0.087874
0.361755 0.088474
0.351565 0.089011
0.341365 0.089482
0.331155 0.089885
0.320934 0.090220
0.310703 0.090484
0.300461 0.090675
0.290208 0.090785
0.279946 0.090803
0.269673 0.090725
0.259390 0.090547
0.249098 0.090261
0.238797 0.089864
0.228488 0.089348
0.218172 0.088708
0.207849 0.087937
0.197522 0.087028
0.187191 0.085974
0.176858 0.084767
0.166525 0.083397
0.156195 0.081855
0.145870 0.080131
0.135554 0.078212
0.125250 0.076086
0.114964 0.073738
0.104700 0.071149
0.094465 0.068300
0.084267 0.065166
0.074117 0.061714
0.064025 0.057907
0.054009 0.053690
0.044090 0.048989
0.039176 0.046425
0.034298 0.043693
0.029464 0.040768
0.024683 0.037614
0.019965 0.034182
0.015330 0.030393
0.010806 0.026119
0.006448 0.021104
0.002392 0.014696
-0.000000 0.000000
0.007608 -0.012992
0.013552 -0.017745
0.019194 -0.021153
0.024670 -0.023870
0.030035 -0.026149
0.035317 -0.028118
0.040536 -0.029854



0.045702 -0.031406
0.050824 -0.032810
0.055910 -0.034090
0.065991 -0.036349
0.075975 -0.038289
0.085883 -0.039981
0.095733 -0.041470
0.105535 -0.042792
0.115300 -0.043972
0.125036 -0.045030
0.134750 -0.045983
0.144446 -0.046843
0.154130 -0.047620
0.163805 -0.048323
0.173475 -0.048960
0.183142 -0.049537
0.192809 -0.050060
0.202478 -0.050534
0.212151 -0.050962
0.221828 -0.051349
0.231512 -0.051699
0.241203 -0.052014
0.250902 -0.052297
0.260610 -0.052551
0.270327 -0.052779
0.280054 -0.052981
0.289792 -0.053162
0.299539 -0.053322
0.309297 -0.053469
0.319066 -0.053609
0.328845 -0.053740
0.338635 -0.053862
0.348435 -0.053973
0.358245 -0.054075
0.368066 -0.054164
0.377897 -0.054242
0.387738 -0.054306
0.397590 -0.054358
0.407451 -0.054395
0.417323 -0.054417
0.427204 -0.054424
0.437096 -0.054414
0.446997 -0.054388
0.456907 -0.054345
0.466828 -0.054283
0.476757 -0.054203
0.486697 -0.054104
0.496645 -0.053984
0.506603 -0.053844
0.516570 -0.053683
0.526546 -0.053500
0.536531 -0.053295
0.546525 -0.053066
0.556528 -0.052813
0.566539 -0.052535
0.576559 -0.052232
0.586587 -0.051903
0.596624 -0.051546
0.606669 -0.051161



0.616722 -0.050748
0.626782 -0.050305
0.636851 -0.049831
0.646927 -0.049325
0.657010 -0.048787
0.667100 -0.048215
0.677196 -0.047607
0.687299 -0.046964
0.697409 -0.046284
0.707523 -0.045565
0.717643 -0.044806
0.727768 -0.044006
0.737898 -0.043163
0.748031 -0.042276
0.758168 -0.041343
0.768307 -0.040363
0.778449 -0.039333
0.788591 -0.038253
0.798735 -0.037121
0.808878 -0.035934
0.819020 -0.034690
0.829161 -0.033388
0.839298 -0.032026
0.849431 -0.030600
0.859560 -0.029110
0.869681 -0.027552
0.879796 -0.025925
0.889901 -0.024225
0.899996 -0.022451
0.910079 -0.020600
0.920148 -0.018668
0.930203 -0.016654
0.940240 -0.014555
0.950258 -0.012367
0.960256 -0.010088
0.970232 -0.007715
0.980182 -0.005244
0.990106 -0.002674
1.000000 -0.000000



4 Appendix B

Polars for the recovered Göttingen 765 airfoil. Data generated with XFOIL, ncrit = 9.

Figure 7. Angle of attack vs. coefficient of lift.



Figure 8. Coefficient of lift vs. coefficient of drag.



Figure 9. Angle of attack vs. coefficient of moment.



Figure 10. Angle of attack vs. Lift/Drag ratio.
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